SEPARABLE L_1 PREDUALS ARE QUOTIENTS OF $C(\Delta)$

BY

W. B. JOHNSON[†] AND M. ZIPPIN

ABSTRACT

It is proved that every separable predual space of an L_1 space is a quotient space of $C(\Delta)$.

1. Introduction

Recently Benyamini and Lindenstrauss [1] gave an example of a separable L_1 predual which is not isomorphic to a complemented subspace of any *C(K)* space. Thus the result proved here—that is, if X is a separable Banach space with X^* isometric to $L_1(\mu)$ for some measure μ , then X is isometric to a quotient space of the continuous real-valued functions on the Cantor set--this result is the best possible for relating general separable L_1 preduals to $C(K)$ spaces. However, the more interesting problem of whether every separable \mathscr{L}_{∞} space is isomorphic to a quotient of a $C(K)$ space, remains open (refer to [3]).

One immediate application of our theorem and results of Pelczyfiski [5] and Rosenthal $[6]$ we can state in a corollary.

COROLLARY. Suppose X is an L_1 predual and T is a non-weakly compact *operator from X into some Banach space Y.*

(i) There is a subspace W of X isomorphic to c_0 and such that the restriction *of T to W is an isomorphism.*

(ii) If X is separable but T^*Y^* is non-separable, then there is a subspace Z *of X isomorphic to* $C(\Delta)$ *such that the restriction of* T to Z is an isomorphism.

We use standard Banach space theory notation. As is customary in the study of

f Johnson's work was supported **in part by NSF** GP-33578.

Received August 6, 1973

 L_1 preduals, we consider real Banach spaces only so as to avoid purely technical complications that arise in the complex case.

2. The construction

It is known that if X is an L_1 predual then X is the completion of the union of subspaces $E_1 \subseteq E_2 \subseteq \cdots$ with E_n isometric to $\binom{n}{\infty}$. (Refer to [2] and [4].) Further, bases $(e_i^n)_{i=1}^n$ for E_n may be chosen so that, for each n and i,

(1)
$$
e_i^n = e_i^{n+1} + \beta_i^n e_{n+1}^{n+1},
$$

(2)
$$
\sum_{j=1}^{n} |\beta_j^n| \leq 1, \text{ and}
$$

(3)
$$
\left\| \sum_{j=1}^{n} \alpha_{j} e_{j}^{n} \right\| = \max |\alpha_{j}| \text{ for any scalars } (\alpha_{j}).
$$

Now pick a set $\{A_i^n: 1 \le i \le k_n; n = 1, 2, \cdots\}$ of non-empty open and closed subsets of the Cantor set Δ to satisfy

(4) $k_1 = 1; k_{n+1} = 2k_n + 1$ for $n > 1$,

$$
(5) \hspace{1cm} A_1^1 = \Delta,
$$

(6)
$$
A_i^n = A_{2i-1}^{n+1} \bigcup A_{2i}^{n+1} \text{ for } 1 \leq i < k_n,
$$

(7)
$$
A_{k_n}^n = A_{2k_n-1}^{n+1} \bigcup A_{2k_n}^{n+1} \bigcup A_{k_{n+1}}^{n+1},
$$

(8)
$$
\{A_i^n : 1 \le i \le k_n\} \text{ is pairwise disjoint,}
$$

(9) $\{A_i^n: 1 \le i \le k_n, n = 1, 2, \cdots\}$ is a base for the topology on Δ .

We identify a subset of Δ with its characteristic function. Setting F_n $=$ Span $\{A_i^n: 1 \le i \le k_n\}$, we have from (9) that $\bigcup F_n$ is dense in $C(\Delta)$. Now the theorem will follow if we can define a linear operator $T: \bigcup F_n \to \bigcup E_n$ so that T maps the unit ball of $\bigcup F_n$ onto the unit ball of $\bigcup E_n$, for then the continuous extension of T to $C(\Delta)$ will be a quotient mapping of $C(\Delta)$ onto X.

We define T by induction. Let $T \alpha A_1^1 = \alpha e_1^1$ for each scalar α . Suppose that T has been defined on F_n so that $T(\text{Ball } F_n) = \text{Ball}(E_n)$. Write $T A_i^n = \sum_{j=1}^n \alpha_j^i e_j^n$ for $1 \leq i \leq k_n$. Now $\|\sum_{i=1}^{k_n} \gamma_i A_i^n\| = 1$ for all choices of signs $\gamma_i = \pm 1$, and $||T|| = 1$, so from (3) it follows that

(10)
$$
\sum_{i=1}^{k_n} |\alpha_j^i| \leq 1 \text{ for each } 1 \leq j \leq n.
$$

Extend T to F_{n+1} by defining

(11)
$$
T A_{2i-1}^{n+1} = \sum_{j=1}^{n} \alpha_j^{i} e_j^{n+1} \text{ for } 1 \leq i \leq k_n,
$$

(12)
$$
T A_{2i}^{n+1} = \sum_{j=1}^{n} \beta_j^n \alpha_j^i e_{n+1}^{n+1} \text{ for } 1 \leq i < k_n,
$$

$$
T A_{2k_n}^{n+1} = 2^{-1} \left(\sum_{j=1}^n \beta_j^n \alpha_j^{k_n} - \left[1 - \sum_{i=1}^{k_n-1} \left| \sum_{j=1}^n \beta_j^n \alpha_j^i \right| \right] \right) e_{n+1}^{n+1},
$$

 (13)

$$
T A_{k_{n+1}}^{n+1} = 2^{-1} \left(\sum_{j=1}^{n} \beta_j^{n} \alpha_j^{k_n} + \left[1 - \sum_{i=1}^{k_n-1} \left| \sum_{j=1}^{n} \beta_j^{n} \alpha_j^{i} \right| \right] \right) e_{n+1}^{n+1},
$$

and extending T linearly to F_{n+1} . (Of course, to make sure that this new definition of T agrees with the old definition on F_n , one must verify that

$$
T A_{2i-1}^{n+1} + T A_{2i}^{n+1} = \sum_{j=1}^{n} \alpha_j^{i} e_j^{n} (1 \leq i < k_n)
$$

and

$$
T A_{2k_{n-1}}^{n+1} + T A_{2k_{n}}^{n+1} + T A_{k_{n+1}}^{n+1} = \sum_{j=1}^{n} \alpha_{j}^{k_{n}} e_{j}^{n}
$$

We omit this trivial computation.)

Suppose A is an extreme point of the unit ball of F_{n+1} , say $A = \sum_{i=1}^{k_{n+1}} \gamma_i A_i^{n+1}$ with $\gamma_i = \pm 1$ for $1 \leq i \leq k_{n+1}$. Write $T A = \sum_{j=1}^{n+1} \Delta_j e_j^{n+1}$. Then from (10) and (11) it follows that for $1 \leq j \leq n$, $|\Delta_j| \leq \sum_{i=1}^{k_n} |\alpha_j^i| \leq 1$. Now if $\gamma_{k_{n+1}} = \gamma_{2k_n}$ we have from (12) and (13) the estimate

$$
\left|\Delta_{n+1}\right| \leq \sum_{i=1}^{k_n-1} \left|\sum_{j=1}^n \beta_j^n \alpha_j^i\right| + \left|\sum_{j=1}^n \beta_j^n \alpha_j^{k_n}\right|
$$

\n
$$
\leq \sum_{j=1}^n \left|\beta_j^n\right| \sum_{i=1}^{k_n} \left|\alpha_j^i\right|
$$

\n
$$
\leq \sum_{j=1}^n \left|\beta_j^n\right| \text{ by (10)}\n\leq 1 \text{ by (2).}
$$

If $\gamma_{k_{n+1}} = -\gamma_{2k_n}$ we have from (12) and (13) that

$$
\left|\Delta_{n+1}\right| \leq \sum_{i=1}^{k_n-1} \left|\sum_{j=1}^n \beta_j^n \alpha_j^i\right| + 1 - \sum_{i=1}^{k_n-1} \left|\sum_{j=1}^n \beta_j^n \alpha_j^i\right| = 1.
$$

200

Thus by (3), $||T|| \le 1$ on F_{n+1} .

Finally, suppose x is in the unit ball of E_{n+1} ,

$$
\text{say } x = \sum_{i=1}^{n+1} \alpha_i e_i^{n+1} \text{ with } |\alpha_i| \leq 1.
$$

By our inductive hypothesis there is $B \in Ball$ F_n satisfying $T B = \sum_{i=1}^n \alpha_i e_i$ say $B = \sum_{i=1}^{k_n} \gamma_{2i-1} A_i$."Thus by (11) $T \sum_{i=1}^{k_n} \gamma_{2i-1} A_{2i-1}^{n+1} = \sum_{i=1}^{n} \alpha_i e_i^{n+1}$. Now set

$$
\gamma_{2i} = \alpha_{n+1} \operatorname{sgn} \left(\sum_{j=1}^{n} \beta_j^n \alpha_j^i \right) (1 \leq i < k_n)
$$
\n
$$
\gamma_{2k_n} = -\alpha_{n+1}, \ \gamma_{k_{n+1}} = \alpha_{n+1}.
$$

Then $|\gamma_i| \leq 1$ for each i and

$$
T\sum_{i=1}^{k_{n+1}}\gamma_i A_i^{n+1}=x.
$$

Thus T Ball F_{n+1} = Ball E_{n+1} . This completes the inductive construction of T and the proof of the theorem.

3. Proof of the corollary

(i) Since the restriction of T to some separable subspace of X is not weakly compact and since every separable subspace of X is contained in a larger subspace which is itself an L_1 predual, we may assume that X is separable. Let $Q: C(\Delta) \rightarrow X$ be a quotient map. Then Q^* is an isometry, hence $Q^*T^* = (TQ)^*$ is not weakly compact, whence *TQ* is not weakly compact. By a result of Pełczyński [5] there is a subspace Y of $C(\Delta)$ with Y isomorphic to c_0 and TQ_{1Y} an isomorphism, thus $W = QY$ has the desired property.

(ii) follows in a similar fashion from Rosenthal's theorem $\lceil 6 \rceil$ that if S is a operator from $C(\Delta)$ such that S^{*} has non-separable range, then there is a subspace Y of $C(\Delta)$ such that S_{1Y} is an isomorphism.

REFERENCES

1. Y. Benyamini and J. Lindenstrauss, *A predual of* l_1 which is not isomorphic to a $C(K)$ *apace,* **Israel J, Math. 13 (1972),** 246-254.

2. A. J. Lazar and J. Lindenstrauss, *On Banach spaces whose duals are LI spaces,* Israel J. Math. 4 (1966), 205-207.

3. J. Lindenstrauss and A. Pelcyzński, *Absolutely summing operators in* \mathscr{L}_n *-spaces and their applications,* Studia Math. 29 (I 968), 275-326.

4. E. A. Michael and A. Pełcyzński, *Separable Banach spaces which admit* l_n^{∞} --approxima *tions,* Israel J. Math. 4 (1966), 189-198.

5. A. Petczyfiski, *Projections in certain Banach spaces,* Studia Math. 19 (1960), 209-228.

6. H. P. Rosenthal, *On factors of* C[0,1] *with nonseparable dual,* Israel J. Math. 13 (1972), 361-378.

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO, U.S.A.

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM ISRAEL

AND

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO, U.S.A.