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ABgrRACT 

It is proved that every separable predual space of an Ll space is a quotient 
space of C(A). 

1. Introduction 

Recently Benyamini and Lindenstrauss [1] gave an example of a separable L 1 

predual which is not isomorphic to a complemented subspace of any C(K) space. 

Thus the result proved here--that is, if X is a separable Banach space with X* 

isometric to Ll(/t) for some measure/~, then X is isometric to a quotient space of  

the continuous real-valued functions on the Cantor set--this result is the best 

possible for relating general separable LI preduals to C(K) spaces. However, the 

more interesting problem of whether every separable La w space is isomorphic to 

a quotient of a C(K) space, remains open (refer to [3]). 

One immediate application of our theorem and results of Pelczyfiski [5] and 

Rosenthal I-6] we can state in a corollary. 

COROLLARY. Suppose X is an Lx predual and Tis  a non-weakly compact 

operator from X into some Banach space Y. 

(i) There is a subspace W of X isomorphic to c o and such that the restriction 

of T to W is an isomorphism. 

(ii) I f  X is separable but T ' Y *  is non-separable, then there is a subspace Z 

of X isomorphic to C(A) such that the restriction of T to Z is an isomorphism. 

We use standard Banach space theory notation. As is customary in the study of 
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Lx preduals, we consider real Banach spaces only so as to avoid purely technical 

complications that arise in the complex case. 

2. The construction 

It is known that if X is an Lt predual then X is the completion of  the union of 

subspaces El --= E2 - "" with E n isometric to l~. (Refer to 12] and [4].) Further, 

bases , ,  (es)l=l for E, may be chosen so that, for each n and i, 

n .~. e~+ l  tm n + l  (1) e~ + Ps e. + x, 

(2) ~ 1~71 ~ 1, and 
j = l  

H 

(3) I ~ ~'e;l -- max 1~,1 for any scalars (~,) 
i t 

Now pick a set {At": 1 < i ___ k,; n = 1,2,-..} of non-empty open and closed 

subsets of the Cantor set A to satisfy 

(4) kl = 1 ; k , + l  = 2 k , + l f o r n > l ,  

(5) ,41 = a ,  
n A n + l  . + 1  (6) At = ~21-1[-JA2s f o r l < i < k , ,  

[ I A n + I  A n + l  U A~k+l , . . ,_k.+~,  (7) A~. = "~2k.-t 

(8) {AT: 1 -< i -< k,} is pairwise disjoint, 

(9) {AT: 1 _< i -< k,, n = 1,2, ...} is a base for the topology on A. 

We identify a subset of A with its characteristic function. Setting F,  

= Span {'47:1 < i < kn}, we have from (9) that U Fn is dense in C(A). Now the 

theorem will follow if we can define a linear operator T: U F n - ,  I.JE, so that T 

maps the unit ball of U Fn onto the unit ball of  U E,, for then the continuous 

extension of  T to C(A) will be a quotient mapping of  C(A) onto X. 

We define T by induction. Let T u A~ = ~ ett for each scalar ~. Suppose that T 

has been defined on F,  so that T(Ball F,) = Ball (E,). Write T As"= 2~"_-t ~ e~ 
~ t .  A n II for 1 < i < k,. Now II k,=l r , ,  tl = 1 for all choices of  signs r, = -+ 1, and 

I1 TII = 1, so from (3)it follows that 

k. 

(10) Y~ [ ~ l  < 1 for each 1 < j _< n. 
i = l  

Extend T to Fn+ t by defining 
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n 
An+I ~ .+ t  for  1 < i < k., (11) T -21-I  = ~t~ e 1 

J = l  

n 
An+ l ~.~ n n + l  (12) T -2 i  = 81 ct~ e.+ 1 for 1 = < i < k., 

1 = 1  

(13) 

I kn-I T~"+t--2k. = 2 - t  8 ;a]"- -  1 -  Y~ 
1 1=1 

rl 

T ~" + 1 2-1 ot~" + E fll~j "~k. + i fl~j I n i n + l  = en§ 
j = l  j = l  J /  

and extending T linearly to F.+ 1. (Of  course, to make sure that this new definition 

o f  T agrees with the old definition on F. ,  one must verify that 

A,,*I ,,*1 ~ ~ e T ( l < i < k . )  T -'~21-1 + T A 2 j  t = o~ _ -  
1 = 1  

and 

j n + l  3 n + l  An+x ~ k,, n T -2k,,-1 + T -2~,. + T k..~ = otj ej.  
J = l  

We omit  this trivial computat ion.)  
~kn+~ An+l  Suppose A is an extreme point of  the unit ball of  F,,+I, say A = --.~=i )'~-~l 

with r~ = --- 1 for  1 < i < k.+l ,  Write T A = ]~.+_-~ A 1 e~ +1. Then from (10) and 

(11) it follows that for  1 Z J Z  n, [All ~ E,t'=l I JI z i. Now if yk.§ = r 2 k .  w e  

have from (12) and (13) the estimate 

k n - 1  n 

t=i  1=1  J 1 

1871 1 51 
J = l  

z 161 by <10) 
J = l  

___ 1 by (2). 

If~k.§ -- - ~2k. we have from (12) and (13) that  

k , - 1  n k 1 n 

8j  ~j = 1. 
l = / = 1  J 1 
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Thus by (3), I1 T II ~ on F~+ 1. 

Finally, suppose x is in the unit ball of  E.+I, 

say x = 
n + l  

E 
l = l  

5, e~ +1 with [ 5,1_-__ 1. 

By our inductive hypothesis there is B eBalI F .  satisfying T B = ~ = 1  5, e, 

say n = Y . ~  ~2~_ lAb."Thus by (11) T ~ =  172~_ ~A2~_+t ~ = .-,~v .= ~ 5~ e~"+~. Now set 

") 72t = 5 .+lsgn ~js~ ( l ~ i < k . )  
j=l  

Then 1711 < 1 for each i and 

5n+1,  ~k.+t  ~ 5n+1" 

kn§ 
T ~ ylA~ +1 = x .  

i=1  

Thus T Ball F,+ t = Ball E.+ 1. This completes the inductive construction of T 

and the proof of  the theorem. 

3. Proof of  the corollary 

(i) Since the restriction of  T to some separable subspace of  X is not weakly 

compact and since every separable subspace of X is contained in a larger subspace 

which is itself an LI predual, we may assume that X is separable. Let Q: C(A) --, X 

be a quotient map. Then Q* is an isometry, hence Q ' T *  = (TQ)* is not weakly 

compact, whence TQ is not weakly compact. By a result of Petczyriski [5] there 

is a subspace Y of C(A) with Y isomorphic to Co and TQI r an isomorphism, thus 

W = Q Y has the desired property. 

(ii) follows in a similar fashion from Rosenthal's theorem [6] that if S is a 

operator from C(A) such that S* has non-separable range, then there is a subspace 

Y of C(A) such that SIr is an isomorphism. 
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